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Abstract. Recent progress in computer vision has been driven by high-capacity
models trained on large datasets. Unfortunately, creating large datasets with pixel-
level labels has been extremely costly due to the amount of human effort required.
In this paper, we present an approach to rapidly creating pixel-accurate seman-
tic label maps for images extracted from modern computer games. Although the
source code and the internal operation of commercial games are inaccessible,
we show that associations between image patches can be reconstructed from the
communication between the game and the graphics hardware. This enables rapid
propagation of semantic labels within and across images synthesized by the game,
with no access to the source code or the content. We validate the presented ap-
proach by producing dense pixel-level semantic annotations for 25 thousand im-
ages synthesized by a photorealistic open-world computer game. Experiments on
semantic segmentation datasets show that using the acquired data to supplement
real-world images significantly increases accuracy and that the acquired data en-
ables reducing the amount of hand-labeled real-world data: models trained with
game data and just 1

3
of the CamVid training set outperform models trained on

the complete CamVid training set.

1 Introduction

Recent progress in computer vision has been driven by high-capacity models trained
on large datasets. Image classification datasets with millions of labeled images support
training deep and highly expressive models [24]. Following their success in image clas-
sification, these models have recently been adapted for detailed scene understanding
tasks such as semantic segmentation [28]. Such semantic segmentation models are ini-
tially trained for image classification, for which large datasets are available, and then
fine-tuned on semantic segmentation datasets, which have fewer images.

We are therefore interested in creating very large datasets with pixel-accurate se-
mantic labels. Such datasets may enable the design of more diverse model architec-
tures that are not constrained by mandatory pre-training on image classification. They
may also substantially increase the accuracy of semantic segmentation models, which
at present appear to be limited by data rather than capacity. (For example, the top-
performing semantic segmentation models on the PASCAL VOC leaderboard all use
additional external sources of pixelwise labeled data for training.)

Creating large datasets with pixelwise semantic labels is known to be very chal-
lenging due to the amount of human effort required to trace accurate object boundaries.
∗ Authors contributed equally
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Fig. 1. Images and ground-truth semantic label maps produced by the presented approach. Left:
images extracted from the game Grand Theft Auto V. Right: semantic label maps. The color
coding is defined in Fig. 4.

High-quality semantic labeling was reported to require 60 minutes per image for the
CamVid dataset [8] and 90 minutes per image for the Cityscapes dataset [11]. Due
to the substantial manual effort involved in producing pixel-accurate annotations, se-
mantic segmentation datasets with precise and comprehensive label maps are orders of
magnitude smaller than image classification datasets. This has been referred to as the
“curse of dataset annotation” [50]: the more detailed the semantic labeling, the smaller
the datasets.

In this work, we explore the use of commercial video games for creating large-scale
pixel-accurate ground truth data for training semantic segmentation systems. Modern
open-world games such as Grand Theft Auto, Watch Dogs, and Hitman feature exten-
sive and highly realistic worlds. Their realism is not only in the high fidelity of material
appearance and light transport simulation. It is also in the content of the game worlds:
the layout of objects and environments, the realistic textures, the motion of vehicles and
autonomous characters, the presence of small objects that add detail, and the interaction
between the player and the environment.
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The scale, appearance, and behavior of these game worlds are significant advan-
tages over open-source sandboxes that lack this extensive content. However, detailed
semantic annotation of images from off-the-shelf games is a challenge because the in-
ternal operation and content of the game are largely inaccessible. We show that this can
be overcome by a technique known as detouring [19]. We inject a wrapper between the
game and the operating system, allowing us to record, modify, and reproduce render-
ing commands. By hashing distinct rendering resources – such as geometry, textures,
and shaders – communicated by the game to the graphics hardware, we generate ob-
ject signatures that persist across scenes and across gameplay sessions. This allows us
to create pixel-accurate object labels without tracing boundaries. Crucially, it also en-
ables propagating object labels across time and across instances that share distinctive
resources.

Using the presented approach, we have created pixel-level semantic segmentation
ground truth for 25 thousand images extracted from the game Grand Theft Auto V. The
labeling process was completed in only 49 hours. Our labeling speed was thus roughly
three orders of magnitude faster than for other semantic segmentation datasets with
similar annotation density. The pixel-accurate propagation of label assignments through
time and across instances led to a rapid acceleration of the labeling process: average
annotation time per image decreased sharply during the process because new object
labels were propagated across images. This is in contrast to prior labeling interfaces, in
which annotation speed does not change significantly during the labeling process, and
total labeling costs scale linearly with dataset size. Annotating the presented dataset
with the approach used for CamVid or Cityscapes [8, 11] would have taken at least 12
person-years. Three of the images we have labeled are shown in Fig. 1.

To evaluate the utility of using game data for training semantic segmentation sys-
tems, we used label definitions compatible with other datasets for urban scene under-
standing [8, 11, 13, 50]. We conducted extensive experiments to evaluate the effective-
ness of models trained with the acquired data. The experimental results show that using
the acquired data to supplement the CamVid and KITTI training sets significantly in-
creases accuracy on the respective datasets. In addition, the experiments demonstrate
that the acquired data can reduce the need for expensive labeling of real-world images:
models trained with game data and just 1

3 of the CamVid training set outperform models
trained on the complete CamVid training set.

2 Related Work

Synthetic data has been used for decades to benchmark the performance of computer
vision algorithms. The use of synthetic data has been particularly significant in eval-
uating optical flow estimation due to the difficulty of obtaining accurate ground-truth
flow measurements for real-world scenes [6, 7, 18, 32]. Most recently, the MPI-Sintel
dataset has become a standard benchmark for optical flow algorithms [9] and has ad-
ditionally yielded ground-truth data for depth estimation and bottom-up segmentation.
Synthetic scenes have been used for evaluating the robustness of image features [21]
and for benchmarking the accuracy of visual odometry [16]. Renderings of object mod-
els have been used to analyze the sensitivity of convolutional network features [5]. In
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contrast to this line of work, we use synthetic data not for benchmarking but for training
a vision system, and tackle the challenging problem of semantic segmentation.

Rendered depth maps of parametric models have been used prominently in train-
ing leading systems for human pose estimation and hand tracking [41, 42]. 3D object
models are also increasingly used for training representations for object detection and
object pose estimation [4, 26, 30, 34, 35, 44]. Renderings of 3D object models have
been used to train shape-from-shading algorithms [37] and convolutional networks for
optical flow estimation [12]. Renderings of entire synthetic environments have been
proposed for training convolutional networks for stereo disparity and scene flow esti-
mation [31]. Our work is different in two ways. First, we tackle the problem of semantic
segmentation, which involves both recognition and perceptual grouping [17, 23, 28, 43].
Second, we obtain data not by rendering 3D object models or stylized environments, but
by extracting photorealistic imagery from a modern open-world computer game with
high-fidelity content.

Computer games – and associated tools such as game engines and level editors
– have been used a number of times in computer vision research. Development tools
accompanying the game Half Life 2 were used for evaluating visual surveillance sys-
tems [46]. These tools were subsequently used for creating an environment for training
high-performing pedestrian detectors [29, 49, 51]. And an open-source driving simula-
tor was used to learn mid-level cues for autonomous driving [10]. In contrast to these
works, we deal with the problem of semantic image segmentation and demonstrate that
data extracted from an unmodified off-the-shelf computer game with no access to the
source code or the content can be used to substantially improve the performance of
semantic segmentation systems.

Somewhat orthogonal to our work is the use of indoor scene models to train deep
networks for semantic understanding of indoor environments from depth images [15,
33]. These approaches compose synthetic indoor scenes from object models and syn-
thesize depth maps with associated semantic labels. The training data synthesized in
these works provides depth information but no appearance cues. The trained models
are thus limited to analyzing depth maps. In contrast, we show that modern computer
games can be used to increase the accuracy of state-of-the-art semantic segmentation
models on challenging real-world benchmarks given regular color images only.

3 Breaking the Curse of Dataset Annotation

Extracting images and metadata from a game is easy if the source code and content are
available [10, 14]. Open-source games, however, lack the extensive, detailed, and real-
istic content of commercial productions. In this section, we show that rapid semantic
labeling can be performed on images generated by off-the-shelf games, without access
to their source code or content. We then demonstrate the presented approach by produc-
ing pixel-accurate semantic annotations for 25 thousand images from the game Grand
Theft Auto V. (The publisher of Grand Theft Auto V allows non-commercial use of
footage from the game as long as certain conditions are met, such as not distributing
spoilers [38].)
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3.1 Data acquisition

A brief introduction to real-time rendering. To present our approach to data acqui-
sition, we first need to review some relevant aspects of the rendering pipeline used in
modern computer games [2]. Modern real-time rendering systems are commonly based
on deferred shading. Geometric resources are communicated to the GPU to create a
depth buffer and a normal buffer. Maps that specify the diffuse and specular compo-
nents of surface reflectance are communicated to create the diffuse and specular buffers.
Buffers that collect such intermediate products of the rendering pipeline are called G-
buffers. Illumination is applied to these G-buffers, rather than to the original scene com-
ponents [40]. This decoupled processing of geometry, reflectance properties, and illumi-
nation significantly accelerates the rendering process. First, shading does not need to be
performed on elements that are subsequently culled by the geometry pipeline. Second,
shading can be performed much more efficiently on G-buffers than on an unstructured
stream of objects. For these reasons, deferred shading has been widely adopted in high-
performance game engines.

Extracting information from the rendering pipeline. How can this pipeline be em-
ployed in creating ground-truth semantic labels if we don’t have access to the game’s
code or content? The key lies in the game’s communication with the graphics hardware.
This communication is structured. Specifically, the game communicates resources of
different types, including geometric meshes, texture maps, and shaders. The game then
specifies how these resources should be combined to compose the scene. The content
of these resources persists through time and across gameplay sessions. By tracking the
application of resources to different scene elements, we can establish associations be-
tween these scene elements.

Our basic approach is to intercept the communication between the game and the
graphics hardware. Games communicate with the hardware through APIs such as OpenGL,
Direct3D, or Vulkan, which are provided via dynamically loaded libraries. To initiate
the use of the hardware, a game loads the library into its application memory. By pos-
ing as the graphics library during this loading process, a wrapper to the library can be
injected and all subsequent communication between the game and the graphics API can
be monitored and modified. This injection method is known as detouring [19] and is
commonly used for patching software binaries and achieving program interoperability.
It is also used by screen-capturing programs and off-the-shelf graphics debugging tools
such as RenderDoc [22] and Intel Graphics Performance Analyzers [20]. To perform
detouring, a wrapper needs to implement all relevant interfaces and forward calls to the
original library. We implemented a wrapper for the DirectX 9 API and used RenderDoc
for wrapping Direct3D 11. We successfully tested these two implementations on three
different rendering engines used in AAA computer games. By intercepting all commu-
nication with the graphics hardware, we are able to monitor the creation, modification,
and deletion of resources used to specify the scene and synthesize an image.

We now focus on the application of our approach to the game Grand Theft Auto
V (GTA5), although much of the discussion applies more broadly. To collect data, we
used RenderDoc to record every 40th frame during GTA5 gameplay. Being a debugger
for applications, RenderDoc can be configured to record all calls of an application to
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the graphics API with their respective arguments and allows detailed inspection of the
arguments. Since RenderDoc is scriptable and its source code is available as well, we
modified it to automatically transform recorded data into a format that is suitable for
annotation.

Specifically, the wrapper saves all information needed to reproduce a frame. The
frames are then processed in batch after a gameplay session to extract all information
needed for annotation. (This separate processing requires about 30 seconds per frame.)
Annotation of large batches of collected and processed frames is performed later in
an interactive interface that uses the extracted information to support highly efficient
annotation (Fig. 3). In the following paragraphs, we discuss several challenges that had
to be addressed:

1. Identify function calls that are relevant for rendering objects into the set of G-
buffers that we are interested in.

2. Create persistent identities for resources that link their use across frames and across
gameplay sessions.

3. Organize and store resource identities to support rapid annotation in a separate
interactive interface.

Identifying relevant function calls. To identify rendering passes, RenderDoc groups
function calls into common rendering passes based on predefined heuristics. We found
that strictly grouping the calls by the G-buffers that are assigned as render targets works
more reliably. That way, we identify the main pass that processes the scene geometry
and updates the albedo, surface normal, stencil, and depth buffers as well as the ren-
dering passes that draw the head-up display on top of the scene image. GTA5 applies
post-processing effects such as camera distortion to the rendered image before display-
ing it. To preserve the association of object information extracted from the main pass
with pixels in the final image and to bypass drawing the head-up display (HUD), we
omit the camera distortion and subsequent HUD passes.

Identifying resources. To propagate labels across images, we need to reliably identify
resources used to specify different scene elements. When the same mesh is used in two
different frames to specify the shape of a scene element, we want to reliably recognize
that it is the same mesh. During a single gameplay session, a resource can be recognized
by its location in memory or by the ID used by the application to address this resource.
However, the next time the game is launched, memory locations and IDs associated with
resources will be different. To recognize resources across different gameplay sessions,
we instead hash the associated memory content. We use a non-cryptographic hash func-
tion [3] to create a 128-bit key for the content of the memory occupied by the resource.
This key is stored and is used to identify the resource in different frames. Thus, for each
recorded frame, we create a lookup table to map the volatile resource IDs to persistent
hash keys.

Formatting for annotation. Although we can now identify and associate resources that
are being used to create different frames, we have not yet associated these resources
with pixels in the rendered images. We want to associate each mesh, texture, and shader
with their footprint in each rendered image. One way to do this would be to step through
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the rendering calls and perform pixel-level comparisons of the content of each G-buffer
before and after each call. However, this is unreliable and computationally expensive.
Instead, we perform two complete rendering passes instead of one and produce two
distinct images. The first rendering pass produces the color image and the associated
buffers as described above: this is the conventional rendering pass performed by the
game. The second rendering pass is used to encode IDs into pixels, such that after this
pass each pixel stores the resource IDs for the mesh, texture, and shader that specify the
scene element imaged at that pixel. For this second rendering pass, we replace all the
shaders with our own custom shader that encodes the resource IDs of textures, meshes,
and original shaders into colors and writes them into four render targets. Four render
targets with three 8-bit color channels each provide us with 96 bits per pixel, which we
use to store three 32-bit resource IDs: one for the mesh, one for the texture, one for the
shader. In a subsequent processing stage, we read off these 32-bit IDs, which do not
persist across frames, and map them to the persistent 128-bit hash keys created earlier.

3.2 Semantic labeling

For each image extracted from the game, the pipeline described in Section 3.1 produces
a corresponding resource ID map. For each pixel, this ID map identifies the mesh, tex-
ture, and shader that were used by the surface imaged at that pixel. These IDs are per-
sistent: the same resource is identified by the same ID in different frames. This is the
data used by the annotation process.

Patch decomposition. We begin by automatically decomposing each image into patches
of pixels that share a common 〈mesh, texture, shader〉 combination (henceforth, MTS).
Fig. 2 shows an image from the game and the resulting patches. The patches are fine-
grained and each object is typically decomposed into multiple patches. Furthermore, a
given patch is likely to be contained within a single object. A given mesh may contain
multiple objects (a building and an adjacent sidewalk), a texture may be used on objects
from different semantic classes (car and truck), and a shader may likewise be applied
on semantically distinct objects, but an MTS combination is almost always used within
a single object type.

The identified patches are thus akin to superpixels [36], but have significant advan-
tages over superpixels generated by a bottom-up segmentation algorithm. First, they are
associated with the underlying surfaces in the scene, and patches that depict the same
surface in different images are linked. Second, boundaries of semantic classes in an
image coincide with patch boundaries. There is no need for a human annotator to de-
lineate object boundaries: pixel-accurate label maps can be created simply by grouping
patches. Third, as we shall see next, the metadata associated with each patch can be
used to propagate labels even across object instances that do not share the same MTS.

Association rule mining. So far we have required that two patches share a complete
MTS combination to be linked. However, requiring that the mesh, texture, and shader
all be identical is sometimes too conservative: there are many cases in which just one
or two resources are sufficient to uniquely identify the semantic class of a patch. For
example, a car mesh is highly unlikely to be used for anything but a car. Instead of
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Fig. 2. Illustration of the patches used as atomic units during the annotation process. Top left:
one of the images in our dataset. Top right: patches constructed by grouping pixels that share
a common MTS combination. Different patches are filled with different colors for illustration.
Bottom row: partial magnifications of the top images.

specifying such cases by hand, we discover them automatically during the labeling
process via association rule mining [1].

During the annotation process, statistical regularities in associations between re-
sources and semantic labels are detected. When sufficient evidence is available for a
clear association between a resource and a semantic class, a rule is automatically cre-
ated that labels other patches that use this resource by the associated class. This further
speeds up annotation by propagating labels not just to observations of the same surface
in the scene at different times, but also across different objects that use a distinctive
resource that clearly identifies their semantic class.

Annotation process. We use a simple interactive interface that supports labeling patches
by clicking. The interface is shown in Fig. 3. Labeled areas are tinted by the color of
their semantic class. (The color definitions are shown in Fig. 4.) The annotator selects
a semantic class and then clicks on a patch that has not yet been labeled. In Fig. 3(left),
four patches are unlabeled: part of a sidewalk, a fire hydrant, and two patches on the
building. They are labeled in 14 seconds to yield the complete label map shown in
Fig. 3(right).

Labeling the very first image still takes time due to the granularity of the patches.
However, the annotation tool automatically propagates labels to all patches that share
the same MTS in all images, as well as other patches that are linked by distinctive
resources identified by association rule mining. As the annotation progresses, more and
more patches in all images are pre-labeled. The annotation time per image decreases
during the process: the more images have been annotated, the faster the labeling of
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Fig. 3. Annotation interface. Labeled patches are tinted by the color of their semantic class. The
annotator selects a semantic class and applies it to a patch with a single click. Left: an intermediate
state with four patches yet unlabeled. Right: a complete labeling produced 14 seconds later.

each new image is. Our annotation tool only presents an image for annotation if more
than 3% of the image area has not been pre-labeled automatically by propagating labels
from other frames. In this way, only a fraction of the images has to be explicitly handled
by the annotator.

Labeling each pixel in every image directly would be difficult even with our single-
click interface because distant or heavily occluded objects are often hard to recognize.
The label propagation ensures that even if a patch is left unlabeled in a given image
because it is small or far away, it will likely be labeled eventually when the underlying
surface is seen more closely and its assigned label is propagated back.

3.3 Dataset and analysis

We extracted 24,966 frames from GTA5. Each frame has a resolution of 1914×1052
pixels. The frames were then semantically labeled using the interface described in Sec-
tion 3.2. The labeling process was completed in 49 hours. In this time, 98.3% of the
pixel area of the extracted images was labeled with corresponding semantic classes.
Classes were defined to be compatible with other semantic segmentation datasets for
outdoor scenes [8, 11, 39, 50]. The distribution of classes in our dataset is shown in
Fig. 4.
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Fig. 4. Number of annotated pixels per class in our dataset. Note the logarithmic scale.
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General statistics for the dataset are summarized in Table 1. Our dataset is roughly
two orders of magnitude larger than CamVid [8] and three orders of magnitude larger
than semantic annotations created for the KITTI dataset [13, 39]. The average annota-
tion time for our dataset was 7 seconds per image: 514 times faster than the per-image
annotation time reported for CamVid [8] and 771 times faster than the per-image anno-
tation time for Cityscapes [11].

Table 1. Comparison of densely labeled semantic segmentation datasets for outdoor scenes. We
achieve a three order of magnitude speed-up in annotation time, enabling us to densely label tens
of thousands of high-resolution images.

#pixels annotation density annotation time annotation speed
[109] [%] [sec/image] [pixels/sec]

GTA5 50.15 98.3 7 279,540
Cityscapes (fine) [11] 9.43 97.1 5400 349
Cityscapes (coarse) [11] 26.0 67.5 420 3095
CamVid [8] 0.62 96.2 3,600 246
KITTI [39] 0.07 98.4 N/A N/A

Label propagation. The label propagation mechanisms significantly accelerated anno-
tation time. Specific MTS combinations labeled during the process cover 73% of the
cumulative pixel area in the dataset. Only a fraction of that area was directly labeled
by the annotator; most labels were propagated from other images. Patches covered by
learned association rules account for 43% of the dataset. During the annotation process,
2,295 association rules were automatically constructed. The union of the areas covered
by labeled MTS combinations and learned association rules accounts for the 98.3%
annotation density of our dataset.

Define the pre-annotated area of an image to be the set of patches that are pre-
labeled before the annotator reaches that image. The patches in the pre-annotated area
are pre-labeled by label propagation across patches that share the same MTS and via
learned association rules. For each image, we can measure the size of the pre-annotated
area relative to the whole frame. This size is 0% if none of the image area is pre-
annotated (e.g., for the very first image processed by the annotator) and 100% if the
entirety of the image area is already annotated by the time the annotator reaches this
image. In a conventional annotation process used for datasets such as CamVid and
Cityscapes, the pre-annotated area is a constant 0% for all images. The pre-annotated
area for images handled during our labeling process is plotted in Fig. 5. 98.7% of the
frames are more than 90% pre-annotated by the time they are reached by the human
annotator.

Diversity of the collected data. We also analyze the diversity of the images extracted
from the game world. The effectiveness of label propagation may suggest that the col-
lected images are visually uniform. This is not the case. Fig. 6 shows the distribution of
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Fig. 5. Effect of label propagation. For each frame, the plots show the fraction of image area
that is pre-annotated by the time the human annotator reaches that frame. On the left, the frames
are arranged in the order they are processed; on the right, the frames are sorted by magnitude of
pre-annotated area. Only 333 frames (1.3% of the total) are less than 90% pre-annotated by the
time they are reached by the human annotator.

the number of frames in which MTS combinations in the dataset occur. As shown in the
figure, 26.5% of the MTS combinations only occur in a single image in the collected
dataset. That is, more than a quarter of the MTS combinations observed in the 25 thou-
sand collected images are only observed in a single image each. The median number of
frames in which an MTS occurs is 4: that is, most of the MTS combinations are only
seen in 4 images or less out of the 25 thousand collected images. This indicates the high
degree of variability in the collected dataset.

1 2 3 4 5 7 10 15 25 50 100 250 1000 5000
0%

10%

20%

30%

Fig. 6. Distribution of the number of frames in which an MTS combination occurs. 26.5% of
the MTS combinations only occur in a single image each and most of the MTS combinations are
only seen in 4 images or less.

In addition, Fig. 7 shows 20 randomly sampled images from our dataset. As the fig-
ure demonstrates, the images in the collected dataset are highly variable in their content
and layout.

4 Semantic Segmentation

We now evaluate the effectiveness of using the acquired data for training semantic seg-
mentation models. We evaluate on two datasets for semantic segmentation of outdoor
scenes: CamVid [8] and KITTI [13, 39]. As our semantic segmentation model, we use
the front-end prediction module of Yu and Koltun [52]. Our training procedure consists
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Fig. 7. Randomly sampled images from the collected dataset, illustrating its diversity.

of two stages. In the first stage, we jointly train on real and synthetic data using mini-
batch stochastic gradient descent with mini-batches of 8 images: 4 real and 4 synthetic.
50K iterations are performed with a learning rate of 10−4 and momentum 0.99. The
crop size is 628×628 and the receptive field is 373×373 pixels. In the second stage, we
fine-tune for 4K iterations on real data only, using the same parameters as in the first
stage.

4.1 CamVid dataset

We begin with experiments on the CamVid dataset. For ease of comparison to prior
work, we adopted the training and test setup of Sturgess et al. [45], which has become
standard for the CamVid dataset. This setup has 11 semantic classes and a split of the
dataset into 367 training, 100 validation, and 233 test images.

The main results are summarized in Table 2. The table shows that using the synthetic
data during training increases the mean IoU by 3.9 percentage points. In addition, we
used the full set of synthetic images and varied the proportion of real images in the
training set. The results show that when we train on 1

3 of the CamVid training set along
with the game data, we surpass the accuracy achieved when training on the full CamVid
training set without game data. This suggests that the presented approach to acquiring
and labeling synthetic data can significantly reduce the amount of hand-labeled real-
world images required for training semantic segmentation models.
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Table 2. Controlled experiments on the CamVid dataset. Training with the full CamVid training
set augmented by the synthetic images increases the mean IoU by 3.9 percentage points. Synthetic
images also allow reducing the amount of labeled real-world training data by a factor of 3.
real images 100% - 25% 33% 50% 100%
synthetic images (all) - 100% X X X X

mean IoU 65.0 43.6 63.9 65.2 66.5 68.9

Table 3 provides a comparison of our results to prior work on semantic segmentation
on the CamVid dataset. Our strongest baseline is the state-of-the-art system of Kundu et
al. [25], which used a bigger ConvNet and analyzed whole video sequences. By using
synthetic data during training, we outperform this baseline by 2.8 percentage points,
while considering individual frames only.

Table 3. Comparison to prior work on the CamVid dataset. We outperform the state-of-the-art
system of Kundu et al. by 2.8 percentage points without utilizing temporal cues.
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SuperParsing [47] 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.9 42.0
Liu and He [27] 66.8 66.6 90.1 62.9 21.4 85.8 28 17.8 8.3 63.5 8.5 47.2
Tripathi et al. [48] 74.2 67.9 91 66.5 23.6 90.7 26.2 28.5 16.3 71.9 28.2 53.2
Yu and Koltun [52] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Kundu et al. [25] 84 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1
Our result 84.4 77.5 91.1 84.9 51.3 94.5 59 44.9 29.5 82 58.4 68.9

4.2 KITTI dataset

We have also performed an evaluation on the KITTI semantic segmentation dataset.
The results are reported in Table 4. We use the split of Ros et al. [39], which consists
of 100 training images and 46 test images. We compare against several baselines for
which the authors have either provided results on this dataset or released their code.
The model trained with game data outperforms the model trained without game data by
2.6 percentage points.

5 Discussion

We presented an approach to rapidly producing pixel-accurate semantic label maps for
images synthesized by modern computer games. We have demonstrated the approach
by creating dense pixel-level semantic annotations for 25 thousand images extracted
from a realistic open-world game. Our experiments have shown that data created with
the presented approach can increase the performance of semantic segmentation models
on real-world images and can reduce the need for expensive conventional labeling.
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Table 4. Results on the KITTI dataset. Training with game data yields a 2.6 percentage point
improvement over training without game data.
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Ros et al. [39] 71.8 69.5 84.4 51.2 4.2 72.4 1.7 32.4 2.6 45.3 3.2 39.9
Tripathi et al. [48] 75.1 74.0 84.4 61.8 0 75.4 0 1.0 2.2 37.9 0 37.4
Yu and Koltun [52] 84.6 81.1 83 81.4 41.8 92.9 4.6 47.1 35.2 73.1 26.4 59.2
Ours (real only) 84 81 83 80.2 43.2 92.4 1.0 46.0 35.4 74.8 27.9 59
Ours (real+synth) 85.7 80.3 85.2 83.2 40.5 92.7 29.7 42.8 38 75.9 22.6 61.6

There are many extensions that would be interesting. First, the presented ideas can
be extended to produce continuous video streams in which each frame is densely anno-
tated. Second, the presented approach can be applied to produce ground-truth data for
many dense prediction problems, including optical flow, scene flow, depth estimation,
boundary detection, stereo reconstruction, intrinsic image decomposition, visual odom-
etry, and more. Third, our ideas can be extended to produce instance-level – rather than
class-level – segmentations. There are many other exciting opportunities and we believe
that modern game worlds can play a significant role in training artificial vision systems.
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51. Xu, J., Vázquez, D., López, A.M., Marı́n, J., Ponsa, D.: Learning a part-based pedestrian
detector in a virtual world. IEEE Transactions on Intelligent Transportation Systems 15(5)
(2014)

52. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)


