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ABSTRACT 
We explore how to track people and furniture based on a 
high-resolution pressure-sensitive floor. Gravity pushes peo-
ple and objects against the floor, causing them to leave im-
prints of pressure distributions across the surface. While the 
sensor is limited to sensing direct contact with the surface, 
we can sometimes conclude what takes place above the sur-
face, such as users’ poses or collisions with virtual objects. 
We demonstrate how to extend the range of this approach by 
sensing through passive furniture that propagates pressure to 
the floor. To explore our approach, we have created an 8 m2 
back-projected floor prototype, termed GravitySpace, a set of 
passive touch-sensitive furniture, as well as algorithms for 
identifying users, furniture, and poses. Pressure-based sens-
ing on the floor offers four potential benefits over camera-
based solutions: (1) it provides consistent coverage of rooms 
wall-to-wall, (2) is less susceptible to occlusion between us-
ers, (3) allows for the use of simpler recognition algorithms, 
and (4) intrudes less on users’ privacy.  
Author Keywords 
Interactive floor; smart rooms; ubicomp; multitoe; multi-
touch; FTIR; tabletop; vision. 
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INTRODUCTION 
Brummit et al. define self-aware spaces as “… [a space that] 
knows its own geometry, the people within it, their actions & 
preferences, and the resources available to satisfy their re-
quests” [5]. Such smart rooms support users by offering not 
only a series of convenient functions, like home automation, 
but also by acting pro-actively on the user’s behalf. Similar 
systems have been proposed to monitor the wellbeing of (el-
derly) inhabitants [15]. 
 

In order to provide this support, smart rooms track users and 
try to automatically recognize their activities. In systems like 
EasyLiving, this was done by pointing tracking equipment, 
such as cameras, at the interior of the room [5]. The direct 
observation of scenes using computer vision is of limited 
reliability, because of illumination and perspective effects, as 
well as occlusion between people. The latter also affects 
more recent approaches based on depth cameras (e.g., 
LightSpace [43]). 
We propose an alternative approach to tracking people and 
objects in smart rooms. Building on recent work on touch-
sensitive floors (e.g., Multitoe [1]) and pose reconstruction, 
such as [44], we explore how much a room can infer about its 
inhabitants solely based on the pressure imprints people and 
objects leave on the floor. 

 
Figure 1: GravitySpace recognizes people and objects. We use a 

mirror-metaphor to show how GravitySpace identifies users 
and tracks their location and poses, solely based on the pressure 

imprints they leave on the floor. 

GRAVITYSPACE 
Figure 1 shows our floor installation GravitySpace with three 
users and three pieces of furniture. To illustrate what the sys-
tem senses and reconstructs about the physical world, the 
prototype displays its understanding of the physical world 
using a mirror-metaphor, so that every object stands on its 
own virtual reflection. Based on this mirror world, we see 
that GravitySpace recognizes the position and orientation of 
multiple users, the identity of users as demonstrated by show-
ing their personalized avatars, selected poses, such as stand-
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ing and sitting on the floor and on furniture, and tracking of 
leg movements to interact with virtual objects, here a soccer 
ball. GravitySpace updates in real-time and runs a physics 
engine to model the room above the surface. To convey the 
3D nature of the sensing, this photo was shot with a tracked 
camera—this camera tracking is not part of GravitySpace. 
GravitySpace consists of a single sensor, namely the floor 
itself which is pressure-sensitive, while the seating furniture 
passively propagates pressure to the floor. All the tracking 
and identification shown in Figure 1 is solely based on pres-
sure imprints objects leave on this floor as shown in Figure 3. 

 
Figure 2: Gravity pushes people and objects against the ground, 

where they leave imprints that GravitySpace can sense. 
Our approach is based on the general principle of gravity, 
which pushes people and objects against the floor, causing 
the floor to sense pressure imprints as illustrated in Figure 3. 
While the pressure sensor is limited to sensing contact with 
the ground, GravitySpace not only tracks what happens in the 
floor plane (such as shoeprints), but is able to draw a certain 
amount of conclusions about what happens in the space 
above the floor, such as a user’s pose, or the collision be-
tween a user and a virtual ball. In addition, GravitySpace 
senses what takes place on top of special furniture that prop-
agates pressure to the floor. 

 
Figure 3: GravitySpace sees the scene from Figure 1 as a set of 

imprints (circles, lines, and text added for clarity). 
Figure 3 shows the scene from Figure 1 as perceived by 
GravitySpace. This is the information GravitySpace uses to 
reconstruct the scene above the ground. We see four concepts 
here, which are detailed in Section Algorithms: 

(1) recognition of poses (86.12% accuracy) based on classi-
fying contact types, such as hands or buttocks, and their spa-
tial arrangement, (2) prediction of leg movements by analyz-
ing pressure distributions, and (3) pressure-based markers 
that allow GravitySpace to detect objects, such as furniture. 
In addition, GravitySpace recognizes users based on their 
shoeprints, similar to Multitoe [1], but optimized for the 
20 times larger floor size and a larger number of simultane-
ous users (99.82% accuracy with 120 users in real time). 
Prototype Hardware 
Figure 4 shows our current GravitySpace prototype hardware. 
It senses pressure based on FTIR [13], using a camera located 
below the floor. It provides an 8 m2 interaction surface in a 
single seamless piece and delivers 12 megapixels overall 
pressure sensing resolution at a pixel size of 1×1 mm. Our 
prototype also offers 12 megapixel back projection. While 
not necessary for tracking, it allows us to visualize the work-
ings of the system, as we did in Figure 1. 

 
Figure 4: The GravitySpace prototype senses 25 dpi pressure and 

projects across an active area of 8 m² in a single seamless piece.  
We expect sensing hardware of comparable size and resolu-
tion to soon be inexpensive and mass available, for example 
in the form of a large, thin, high-resolution pressure sensing 
foil (e.g., UnMousePad [34]). We envision this material to be 
integrated into carpet and as such installed in new homes 
wall-to-wall. Since the technology is not quite ready to deliver 
the tens of megapixel resolution we require for an entire room, 
our FTIR-based prototype allows us to explore our vision of 
tracking based on pressure imprints today. 

CONTRIBUTION 
The main contribution of this paper is a new approach to 
tracking people and objects in a smart room, namely based 
on a high-resolution pressure-sensitive floor. While the sen-
sor is limited to sensing contact with the surface, we demon-
strate how to conclude a range of objects and events that take 
place above the surface, such as a user’s pose and collisions 
with virtual objects. We demonstrate how to extend the range 
of this approach by sensing through passive furniture that 
propagates pressure to the floor. 
To explore this approach, we have designed and implement-
ed a fully-functional room-size prototype, which we use to 
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demonstrate our vision true to scale. We have also imple-
mented algorithms for tracking and identifying users, furni-
ture, and poses. 
Our main goal with this paper is to demonstrate the technolo-
gy. We validate it using a technical evaluation of user identi-
fication and pose recognition accuracy. The philosophy be-
hind smart rooms, their applications and usability, however, 
are outside the scope of this paper. 
Benefits and Limitations 
Compared to traditional camera-based solutions, the pro-
posed approach offers four benefits: 
(1) It provides consistent coverage of rooms, wall-to-wall. 
Camera-based systems have a pyramid-shaped viewing 
space. Motion capture installations resolve this by leaving 
space along the edges, but that is impractical in regular 
rooms, leading to uneven or spotty coverage. Floor-based 
tracking in contrast, can be flat, integrated into the room it-
self, and provides consistent coverage across the room. 
(2) It is less susceptible to occlusion between users. The per-
spective from below is particularly hard to block—simply 
because people tend to stand next to each other, resulting in 
discernible areas of contact. From a more general perspec-
tive, the benefit of pressure sensing is that mass is hard to 
“hide”. Mass has to manifest itself somewhere, either through 
direct contact or indirectly through another object it is resting 
on. Camera-based systems, in contrast, may suffer from users 
occluding each other if the cameras mounted in one spot 
(e.g., [43]). Systems distributing multiple cameras around a 
room (e.g., [21]) still suffer from dead spots (e.g., in the 
midst of groups of users).  
(3) It allows for the use of simpler, more reliable recognition 
algorithms. Our approach reduces the recognition problem 
from comparing 3D objects to comparing flat objects, be-
cause all objects are flat when pressed against a rigid surface. 
This limits objects to three degrees of freedom (translation 
and rotation in the plane) and allows us to match objects us-
ing simple, robust, and well-understood algorithms from 
digital image processing [8, 11]. 
(4) Pressure-based tracking is less privacy-critical. While 
floor-based sensing captures a lot of information relevant to 
assisted living applications (e.g., [15]), it never captures pho-
tos or video of its inhabitants, mitigating privacy concerns 
(e.g., while getting dressed or using the bathroom). 
On the other hand, our floor-based approach is obviously 
limited in that it can recognize objects only when they are in 
direct contact with the floor. While we reduce the impact of 
these limitations using 3D models based on inverse kinemat-
ics, events taking place in mid-air can obviously not be 
sensed, such as the angle of an arm being raised or a user’s 
gaze direction. The approach is also inherently subject to lag 
in that the floor learns about certain events only with a delay. 
We cannot know the exact position of a user sitting down 
until the user makes contact with the seat. As we place the 
avatar in between, it is subject to inaccuracy. 

RELATED WORK 
The work presented in this paper builds on smart rooms, inter-
active floors, and user identification in ubiquitous computing. 
Multi Display Environments and Smart Rooms 
The concept of integrating computing into the environment 
goes back as far as Weiser (Ubiquitous computing [42]). The 
concept has been researched in the form of smart components 
in a room, e.g., in multi-display environments such as the 
Stanford iRoom [4] or roomware (iLand [37]). Alternatively, 
researchers have instrumented the room itself, e.g., using 
cameras and microphones (e.g., EasyLiving [5]), making user 
tracking a key component of the system. The Georgia Tech 
Aware Home [15] tracks users based on multi-user head 
tracking and combined audio and video sensing. Most recent-
ly, Wilson and Benko demonstrated how to instrument rooms 
using multiple depth cameras (Lightspace [43]). 
Pressure-Sensing Floors 
A series of floor prototypes have used a range of pressure 
sensing technologies offering a variety of resolutions. The 
projection-less magic carpet senses pressure using piezoelec-
tric wires and a pair of Doppler radars [27]. Z-tiles improved 
on this by introducing a modular system of interlocking tiles 
[32]. Pressure sensing has been implemented using force-
sensing resistors [41]. FootSee [44] matches foot data from a 
1.6 m² pressure pad to pre-recorded pose animations of a 
single user with in a fixed orientation. 
In the desktop world, the UnMousePad improves on resistive 
pressure sensing by reducing the number of required wire 
connections [34]. Based on this, Srinivasan et al. built larger-
scale installations, combined with marker-based motion sys-
tems, as well as audio and video tracking [36].  
Since none of the existing technologies scale to the mega-
pixel range of resolution, GravitySpace is built on an exten-
sion of the Multitoe floor. Multitoe uses high-resolution FTIR 
sensing and allows users to interact using direct manipula-
tion [1]. Other instrumented floors are tracked using ceiling-
mounted cameras (e.g., iFloor [16]) or front diffuse illumina-
tion (IGameFloor [12]). Purposes of interactive floors in-
clude immersion (also as part of CAVEs [6, 17]), gaming 
[12], and multi-user collaborative applications [16].  
Furniture that Senses Pressure 
A series of research and products use pressure-sensitive de-
vices and furniture to monitor health, for instance, to prevent 
Decubiti (e.g., [39]), orthopedic use inside of shoes 
(e.g., [10]), and to sense pose while sitting (e.g., [23, 24]). 
Sensing through Objects 
The pressure-transmitting furniture presented in this paper 
builds on the concept of sensing through an object. The con-
cept has been explored in the context of tangible objects. 
Mechanisms include the propagation of light through holes 
(stackable markers [3]) and optical fiber (Lumino [2]) and 
the propagation of magnetic forces, sensed using pressure 
sensors (Geckos [18]). 



 

 

Matching Objects in 2D 
The presented work essentially reduces a 3D problem to a 2D 
problem, allowing us to apply well-explored traditional algo-
rithms from digital image processing [8, 11]. 
Identifying Users 
The majority of large-scale touch technologies, such as dif-
fused illumination (DI [20]), front-DI [12], and FTIR [13] are 
ignorant of who touches. DiamondTouch improved on this 
by mapping users to seat positions [9]. Bootstrapper identi-
fies tabletop users by observing the top of their shoes [33]. 
Recognizing fingerprints has been envisioned to identify 
users of touch systems [38]; Holz and Baudisch implemented 
this by turning a fingerprint scanner into a touch device [14]. 
Schmidt et al. identify tabletop users by the size and shape of 
their hands [35]. 
User identification has been used for a variety of applications 
including the management of access privileges [22] and to 
help children with Asperger syndrome learn social protocol 
[30]. Olwal and Wilson used RFID tags to identify objects on 
the table [25]. The screen-less Smart Floor identifies users by 
observing the forces and timing of the individual phases of 
walking [26]. While floors so far did not have enough resolu-
tion to distinguish soles, footprints have been analyzed as 
evidence in crime scene investigation [28]. Sole imprints and 
sole wear has been used to match people either by hand and 
using semi-automatic techniques based on local feature ex-
tractors, such as MSER [28, 29]. Multitoe distinguishes users 
based on their shoeprints using template-matching [1]. 
WALKTHROUGH 
In the following walkthrough, we revisit the elements from 
Figure 1 including user identification and tracking, pose de-
tection, and pressure-transmitting furniture. Given that this 
paper is about a new approach to tracking, this walkthrough 
is intended to illustrate GravitySpace’s tracking capabilities; 
it is not trying to suggest a specific real-world application 
scenario. As before, we render GravitySpace’s understanding 
of users and furniture as a virtual 3D world under the floor. A 
detailed description of the shown concepts and their imple-
mentation can be found in Section Algorithms. 

 
Figure 5: GravitySpace detects Daniel sitting on the sofa, and 

identifies and tracks René walking across the floor. 

Figure 5 shows Daniel on the left as he is relaxing on the sofa 
and GravitySpace’s interpretation of the scene in the mirror 
world. The same scene is shown from a pressure-sensing 
perspective in Figure 6. GravitySpace parses this pressure 
image to identify the sofa based on embedded pressure mark-
ers and to locate someone sitting on top of the sofa based on 
the pressure imprint of Daniel’s buttocks. The sofa is filled 
with elements that transmit pressure to the floor. 
GravitySpace combines buttocks and the two feet next to the 
sofa into a pose. It also identifies Daniel based on his shoe-
prints. Using this information, Daniel’s avatar is selected 
from a user library and positioned onto the imprints of feet 
and buttocks.  

 
Figure 6: The scene from Figure 5 as seen by the system. 

When Daniel’s friend, René, comes in he is likewise identi-
fied. GravitySpace positions his personalized avatar by fitting 
a skeleton to René’s pressure imprints using inverse kinemat-
ics, based on three control points: the two imprints of René’s 
feet in their respective orientation, as well as René’s center of 
gravity. The latter it placed above the center of pressure be-
tween René’s shoes. 
As René walks across the room, GravitySpace continuously 
tracks his position. By observing the pressure distribution of 
the foot on the ground, GravitySpace predicts where the foot 
currently located in midair is expected to come down. This 
allows it to animate the avatar without having to wait for the 
foot to touch down.  

 
Figure 7: Daniel and René are controlling a video game by 

simply leaning over, tracked by observing varying centers of 
pressure. GravitySpace also detects that Andreas sits down, 

based on the body parts in contact with the floor. 



 

 

René and Daniel decide to play a video game. As shown in 
Figure 7, they interact with the game without a dedicated 
controller by simply shifting their weight to control virtual 
racecars. René and Daniel accelerate and brake by leaning 
forward or backward; they steer by leaning left and right. 
GravitySpace observes this through the sofa and the cube 
seat. Also shown in Figure 7, Andreas, a common friend has 
sat down on the floor to watch the other two playing. 
GravitySpace determines his pose based on the texture and 
spatial arrangement of contact points on the floor. 

 
Figure 8: GravitySpace allows for interaction with virtual ob-
jects as leg movement is tracked above the floor by analyzing 

the center of pressure of the other foot. 
The three friends then decide to play a round of virtual soccer 
(Figure 8). The game requires them to kick a virtual ball. 
GravitySpace cannot directly observe what happens above the 
surface. Instead it observes weight shifts within the other foot, 
and concludes where the kicking foot must be located. Using 
inverse kinematics, it places the avatars and GravitySpace’s 
physics engine computes how the avatar kicks the ball. 

PRESSURE-TRANSMITTING FURNITURE 
While it is quite possible to create furniture with active pres-
sure sensing (e.g., [24]), we have created passive furniture 
that transmits high-resolution pressure, rather than sensing it. 
This offloads sensing to a single centralized active sensing 
component, in our case the floor. Passive furniture also re-
duces complexity and cost, while the absence of batteries and 
wires makes them easy to maintain [2]. 
Everyday furniture already transmits pressure. Furniture im-
prints, however, are limited to representing overall weight 
and balance. While locating the center of gravity has been 
demonstrated by many earlier systems (e.g., VoodooIO [40] 
or commercial systems, such as the Wii Balance board), this 
limits our ability to detect activities taking place on top of the 
furniture (e.g., sitting on a sofa). 
In order to recognize identity and poses of the object on top 
in more detail, we have created the furniture pieces featured 
in Figure 1 and the walkthrough. They transmit pressure in 
comparably high resolution. We accomplish this by using an 
array of “transmitters”. Transmitters have to offer sufficient 
stiffness to transmit pressure (and also to support the weight 

of the person or object on top). Figure 9 shows how we con-
structed a cube seat. We use regular drinking straws as 
transmitters, making the furniture light and sturdy. 1,200 
straws (8 mm in diameter) fill each cube seat; 10,000 fill the 
sofa, which is based on the same principle. Straws are inex-
pensive (e.g., 80 EUR for filling the sofa). The backrest and 
armrest of the sofa are pressure-sensitive as well—they are 
filled with longer “sangria” drinking straws. We obtain the 
desired curved shape by cutting the straws to length a layer at 
a time using a laser cutter. 

 
Figure 9: Each cube seat is filled with 1,200 drinking straws. 
Here one of the steel rods that form the markers is inserted. 

Straws are held together by a frame made from 15 mm fiber-
board. We stabilize the straws in the box using a grid made 
from plywood connected to the frame, which essentially sub-
divides the box into 3×3 independent cells. The grid mini-
mizes skewing, thus prevents the box from tipping over. We 
cover the bottom of the box with Tyvek, a material that crin-
kles but does not stretch, which prevents the bottom from 
sagging, yet transmits pressure. In addition to the leather we 
added a thin layer of foam as cushioning to the top of the 
cube seats for added comfort.  
Weight shifts on top of the box can cause the box to “ride 
up” on the straws, which can cause an edge of the box to lose 
traction with the ground. To assure reliable detection, we 
create markers from weight rods that slide freely in plastic 
tubes and held in by the Tyvek. We use an asymmetric ar-
rangement of rods to give a unique ID to each piece. 

ALGORITHMS 
Figure 10 summarizes the pipeline we implemented to process 
touches that occur on our floor, including recognizing, classi-
fying and tracking events, users and objects based on the pres-
sure patterns they leave. We optimized our pipeline to process 
the entire 12 megapixel image in real-time (25 fps). 

 
Figure 10: GravitySpace processes all input using this pipeline 

to recognize and track users and objects. 
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GravitySpace recognizes objects with texture (e.g., body 
parts or shoeprints) by extracting the imprint features they 
leave in the raw image. For objects with little discernible 
texture or changing texture (e.g., due to users sitting on furni-
ture), we add features using pressure-based markers. 
Our GravitySpace implementation supports three key ele-
ments: (1) Pose reconstruction using pressure cluster classifi-
cation, (2) joint estimation based on pressure distributions 
and inverse kinematic, and (3) user identification based on 
shoeprints.  
Step 1: Pre-Processing Pressure Images 
All processing starts by thresholding the pressure image to 
remove noise. Our algorithm then segments this image and 
extracts continuous areas of pressure using a connected com-
ponent analysis. In the next step, GravitySpace merges areas 
within close range, prioritizing areas that expand towards 
each other. We call the result pressure clusters. A pressure 
cluster may be for example a shoeprint or the buttocks of a 
sitting user. GravitySpace then tracks these clusters over 
time. 
Step 2: Identifying Furniture Based on Markers 
Pressure imprints of larger objects, such as furniture, provide 
little distinguishable texture on their own. In addition, the 
overall texture of seating furniture changes substantially 
when users sit down. GravitySpace therefore uses dot-based 
pressure-markers to locate and identify furniture. Figure 11 
shows the imprint of a cube that we equipped with a marker. 
This particular marker consists of five points. Marker points 
are arranged in a unique spatial pattern that is rotation-
invariant. We designed and implemented marker patterns for 
a sofa, several sitting cubes, and shelves. 

 
Figure 11: (a) Pressure imprint and (b) detected marker points 

(c) of marker-equipped cube. 
To recognize markers, GravitySpace implements brute-force 
matching on the locations that have been classified as marker 
points, trying to fit each registered piece of furniture into the 
observed point set and minimizing the error distance. To in-
crease the stability of recognition, our implementation keeps 
objects whose marker patterns have been detected in a histo-
ry list and increases the confidence level of recently recog-
nized objects. We also use hysteresis to decide when marker 
detection is stable based on the completeness of markers and 
their history confidence. 
Step 3: Classifying Pressure Clusters Based on Image Analysis 
For each pressure cluster in the camera image, GravitySpace 
analyzes the probability of being one of the contact types 
shown in Figure 12. GravitySpace distinguishes hands, 
knees, buttocks, and shoes, thereby further distinguishing 
between heel, tip, and edge of a shoe. These probability dis-

tributions are an essential part of the subsequent pose recog-
nition. Areas covered by furniture pieces are ignored for this 
classification in order to minimize noise. 
In order to classify each pressure cluster, GravitySpace ex-
tracts 16 fast-to-compute image features from the respective 
area in the image, including image moments, structure de-
scriptors using differences of Gaussians, as well as the ex-
tents, area, and aspect ratio of the bounding box around the 
cluster. We trained a feedforward neural network, which as-
signs probabilities for each type of contact to each cluster. 

 
Figure 12: GravitySpace assigns each pressure cluster the prob-

ability of being one of the contact types shown above. 
Step 4: Identifying Users Based on Shoeprints 
Whenever the users’ feet are in contact with the ground—for 
example when standing or sitting, but not when lying—
GravitySpace will recognize users by matching their shoe-
prints against a database of shoes associated with user identi-
ties. As users register with both of their shoes, our approach 
also distinguishes left and right feet.  
Due to the large floor area, previous approaches to user iden-
tification on multi-touch floors are not sufficient on 
GravitySpace, such as template matching in Multitoe [1], 
which observed an area of only a 20th of the size. 

 
Figure 13: GravitySpace uses SIFT to match detected shoe-

prints against a database of registered users. 
To match shoeprints with the same resolution as previous 
systems (1 mm per pixel), GravitySpace uses an implementa-
tion of SIFT [19] that runs on the GPU. Using SIFT as the 
feature detector and descriptor algorithm allows us to match 
shoes with rotation invariance. To identify a user by the shoe, 
GravitySpace counts the number of features that match in 
each of the shoe images in the database and the observed 
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shoeprint as shown in Figure 13. A feature thereby matches if 
the angular distance between the two descriptor vectors is 
within close range. As the number of detected features varies 
substantially between different sole patterns, we normalize 
the distance (i.e., we divide by the maximum number of fea-
tures in either observed or database image). 
Stitching a Shoe Imprint from a Sequence of Frames 
When a user walks on the floor, only a small part of their 
shoe appears in the image at first and then becomes larger as 
their shoe sole rolls over the floor from heel to toe. Since the 
camera consecutively captures images of each such partial 
shoe imprint, GravitySpace merges all partial observations in 
successive frames into an aggregated imprint, which allows 
us to capture an almost complete shoe sole. This concept is 
also commonly used to obtain a more encompassing finger-
print by rolling a finger sideways while taking fingerprints. 
Recovering Shoe Orientation Based on Phase Correlation 
To predict the location of users’ next steps when walking, 
GravitySpace leverages the orientation of the shoes on the 
floor. GravitySpace determines shoe orientations directly 
after matching shoeprints by registering front and back of 
each database shoeprint with the observed shoe on the floor. 
Our system transforms both shoeprints into spectrum images 
and applies log polar transforms to then compute the transla-
tion vector and rotation angle between the two shoeprints 
using phase correlation. All shoes in the database thereby 
have annotated locations of heel and toes, which happens 
automatically upon registration by analyzing the direction of 
walking.  
Step 5a: Pose Recognition Based on Spatial Configura-
tions of Pressure Clusters 
To classify body poses from the observed pressure imprints, 
GravitySpace performs pose matching based on the location 
and classified type of observed pressure clusters. For exam-
ple, GravitySpace observes the spatial configuration of pres-
sure clusters shown in Figure 14, i.e., the imprints of but-
tocks, two feet, and two hands as a user is sitting on the floor. 
To match a pose, GravitySpace uses a set of detectors, one 
for each pose that is registered with the system. Each detector 
is a set of rules based on contact types and their spatial ar-
rangement. GravitySpace currently distinguishes five poses: 
standing, kneeling, sitting on the floor, sitting on cube seat or 
sofa, and lying on a sofa.  
GravitySpace feeds all pressure clusters to all detectors. Each 
detector creates a set of hypotheses. Each hypothesis, in turn, 
contains a set of imprints that match the pose described by 
the detector. For example, hypotheses returned by the sitting 
detector contain buttocks and two feet. Optionally, there may 
also be two hands if users support themselves while leaning 
backwards as shown in Figure 14. Each detector returns all 
possible combinations (or hypotheses) of imprints that match 
the pose implemented by this detector. Each hypothesis thus 
explains a subset of all imprints. We compute the probability 
of a hypothesis by multiplying the classification probabilities 
of all contained imprints with a pose-specific prior. 

 
Figure 14: Based on pressure clusters types and their spatial ar-

rangement, GravitySpace recognizes a sitting and a standing user.  
From these individual hypotheses (explaining a single pose), 
we compute a set of complete hypotheses; each complete 
hypothesis explains all detected imprints by combining indi-
vidual hypotheses. We calculate the probability of a complete 
hypothesis as joint probability of individual hypotheses, as-
suming that individual poses are independent from each oth-
er. We track complete hypotheses over multiple frames using 
a Hidden Markov Model with complete hypotheses as values 
of the latent state variable. 
Step 5b: Tracking Based on Pressure Distributions 
GravitySpace also tracks body parts that are not in contact 
with the floor, such as the locations of feet above the ground 
while walking or kicking. Our system also tracks general 
body tilt, for example when a user leans left or right while 
sitting. This allows for predicting steps before making con-
tact with the floor to reduce tracking latency or to interact 
with virtual objects on the floor. Obviously, our approach 
cannot sense events taking place in mid-air, such as raising 
an arm or changing the gaze direction. 
We estimate the location of in-air joints by analyzing the 
changing centers of gravity within each pressure cluster. We 
then try to best fit a skeleton to the computed locations of all 
joints using a CCD implementation of inverse kinematics. 
GravitySpace finally visualizes the reconstructed body poses 
with 3D avatars. 
Deriving the Location of Feet above the Ground 
GravitySpace enables users to interact with virtual objects, 
such as by kicking a virtual ball as shown in Figure 8. To 
simulate the physical behavior of virtual objects, 
GravitySpace first computes the position of feet above the 
ground. Since a foot is not in contact with the ground when 
kicking, GravitySpace reconstructs its location by analyzing 
the changing pressure distribution of the other foot, which is 
on the ground as shown in Figure 15. Our algorithm first 
calculates the vector from the center of pressure of the cluster 
aggregated over time to the center of pressure of the current 
cluster. This vector corresponds to the direction that a person 
is leaning towards, and is used to directly set the position of 
the foot in mid-air. We again derive a skeleton using inverse 
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kinematics, which enables animating the remaining joints of 
the avatar for output. 
Tracking body tilt 
To track a user’s body tilt, for example when leaning left or 
right when playing the video game described in the 
walkthrough, GravitySpace observes multiple pressure clus-
ters as shown in Figure 16. The system first computes the 
joint center of pressure over all pressure clusters of a user by 
summing up zero and first order moments of the individual 
pressure images. We then exploit that the center of pressure 
directly corresponds to a body’s center of gravity projected 
on the floor. Once the center of gravity is determined, 
GravitySpace sets the corresponding endpoints of the skele-
ton’s kinematic chains; all other joints then follow automati-
cally based on the inverse kinematic. 

 
Figure 15: GravitySpace (a) derives the foot location above the 

floor based on (b) pressure distributions of the other foot. 

 
Figure 16: (a) Tracking a user’s center of gravity based on  

(b) and (c) the joint center of pressure of both feet. 

EVALUATION 
We conducted a technical evaluation of three system compo-
nents, namely pressure cluster classification, user identifica-
tion, and pose recognition. In summary, the algorithms of our 
prototype system allow for (1) distinguishing different body 
parts on the floor with an accuracy of 92.62% based on im-
age analysis of pressure clusters, (2) recognizing four body 
poses with an accuracy of 86.12% based on type and spatial 
relationships between pressure clusters, and (3) identifying 
20 users against a 120-user database with an accuracy of 
99.82% based on shoeprint matching.  
Pressure Cluster Classification 
To evaluate pressure cluster classification, we trained a 
feedforward neural network with data from 12 participants, 
and tested its classification performance with data from an-
other four participants.  
Training Data: We asked 12 participants to walk, stand, kneel, 
and sit on the floor, in order to collect data of the seven dif-
ferent contact types required for pose recognition, namely 
hand, shoe (we distinguish between the entire shoe, ball, rim, 
and heel), knee, and buttocks. In total, we collected 
18,600 training samples. 

 
Figure 17: Confusion matrix for pressure cluster classification. 

Test Data: Following the same procedure, we collected data 
from another four participants, for testing. This resulted in 
3,127 samples. 
Evaluation Procedure: We manually annotated all training 
samples to provide ground truth. We then fed the test data 
into the trained neural network, taking the contact type with 
the highest probability as outcome. Note that our algorithm 
does not discard the probability distributions provided by the 
neural network, but feeds them into the following pose 
recognition as additional input. 
Results: Our approach achieved a classification accuracy of 
86.94% for the seven contact types shown in the confusion 
matrix of Figure 17. If the entire shoe, ball, rim, and heel are 
grouped and treated as a single contact of type “shoe”, as 
done by the pose recognition, classification accuracy reaches 
92.62%.  
Pose Recognition 
We evaluated our pose recognition implementation with five 
participants. As pose recognition is based on descriptors of 
spatial contact layouts, no training data is required for this 
evaluation. 

 
Figure 18: We tested identification of four poses: stand-
ing/walking, sitting, sitting on furniture, and kneeling.  

Test Data: We collected data from five participants, who each 
performed the four poses shown in Figure 18, namely stand-
ing/walking, sitting on the floor, sitting on furniture, and 
kneeling. For each participant and pose, we recorded a sepa-
rate pressure video sequence.  
Evaluation Procedure: To provide ground truth, we manually 
annotated all frames with the currently shown pose. We then 
ran our algorithm on all frames of the recorded videos, and 
compared the detected poses to ground truth annotations.  
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Results: 86.12% (SD=13.5) of poses were correctly identified 
within a time window of 1.5 s as tolerance. In comparison, 
FootSee achieves recognition rates of 80% (tested with a 
single subject) for five standing only activities [44]. 
User Identification 
We determined the user identification accuracy of our im-
plementation with 20 users. 
Registration: To populate the user database, each participant 
walked in circles for about 35 steps on the floor. 
GravitySpace now selected one left and one right shoeprint 
for each participant, choosing the shoeprint with the mini-
mum distance in the feature space compared to all other 
shoeprints of the same participant and foot. 
Test Data: After a short break, participants walked a test se-
quence of about 60 steps. Shoeprints were in contact with the 
floor for an average of 0.92 s (SD=0.13). Participants then 
did another round. This time, however, they were instructed 
to walk as fast as possible, resulting in a sequence of about 
70 steps with a lower average duration of 0.38 s (SD=0.11). 

 
Figure 19: Identification accuracy for walking slow and fast, using 

databases of 20 and 120 users. Aggregating multiple frames leads to 
more complete shoeprints and better identification accuracies. 

Evaluation Procedure: We evaluated the identification perfor-
mance by running our algorithms on the recorded test data. 
Obviously, the slower participants walked, the longer their 
feet were in contact with the floor, and the more frames were 
available. The foot part in contact with the floor varied while 
walking, rolling from heel to toe. As described above, our 
algorithm reconstructed shoeprints by merging successive 
pressure imprints. We ran our identification algorithms on all 
aggregated imprints with an area greater than 30 cm2, which 
is the minimum area for discernible shoe contacts as deter-
mined during the previous pressure cluster evaluation. 

Results: We evaluated the test set against two databases, one 
containing 20 study participants, and one enlarged with data 
from 100 additional people (i.e., lab members and visitors). 
Figure 19 shows the identification accuracy using these two 
databases for both walking slow and fast. As expected, larger 
shoeprints aggregated from more frames resulted in better 
recognition. For the 20-user database, the classification accu-
racy reached 99.94% for shoeprints with an area between 180 
and 190 cm² (the average area of shoeprints). When walking 
fast, recognition rates slightly dropped to a maximum classi-
fication accuracy of 99.19%. This is expected as shoeprints 
were more blurry.  
We then reran the classification against the 120-user data-
base. Our approach correctly identified 99.82% shoeprints 
when walking slowly, and 97.56% when walking fast. In 
comparison, Orr et al.’s Smart Floor identifies users based on 
their footstep force profiles and achieves recognition rates of 
93% for 15 users [26]. Qian et al. correctly recognize 94% of 
10 users based on gait analysis [31]. 
Speed: Feature extraction took 47.7 ms (SD = 11.4) per 
shoeprint, which is independent of the number of registered 
users. Identification took 251.4 ms (SD = 81.2) using a data-
base of 120 users. Each additionally registered user increases 
the runtime by 2 ms. 
To maintain a frame rate of 25 fps, GravitySpace runs user 
identification asynchronously. Before identification is com-
pleted, users are tracked based on heuristics (e.g., distance 
and orientation of shoeprints). Once identified, user tracking 
relies on this information. To reduce delays due to identifica-
tion, GravitySpace caches recently seen users: new contacts 
are first compared to this short list of before falling back to 
the entire participant database. 

CONCLUSIONS AND FUTURE WORK 
We have demonstrated how to track people and furniture 
based on a high-resolution 8 m2 pressure-sensitive floor. 
While our sensor is limited to sensing contact with the sur-
face, we have demonstrated how to conclude a range of ob-
jects and events that take place above the surface, such as 
user pose and collisions with virtual objects. We demonstrat-
ed how to extend the range of this approach by sensing 
through passive furniture that propagates pressure to the 
floor. As future work, we plan to combine GravitySpace with 
other touch-sensitive surfaces into an all touch-sensitive 
room, and explore the space of explicit interaction across 
large floors. 
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